metabolomicsUM


[Up] [Top]

Documentation for package ‘metabolomicsUM’ version 1.0

Help Pages

A B C D F G H I K M N O P R S T U V X

-- A --

aov.all.vars Analysis of variance
aov.one.var Analysis of variance of one variable
apply.filter.function Apply filter function

-- B --

background.correction Background correction
baseline.correction Baseline correction
boxplot.variables Boxplot of variables

-- C --

calculate.ellipses Calculate ellipses
calculate.shifts Calculate shifts
check.dataset Check dataset
clustering Perform cluster analysis
convert.to.factor Convert metadata to factor
correlations.dataset Dataset correlations
count.missing.values Count missing values
count.missing.values.per.sample Count missing values per sample
count.missing.values.per.variable Count missing values per variable
create.dataset Create dataset

-- D --

data.correction Data correction
dataset.from.peaks Dataset from peaks
dendrogram.plot Plot dendrogram
dendrogram.plot.col Plot dendrogram

-- F --

feature.selection Perform feature selection
filter.feature.selection Perform selection by filter
find.equal.samples Find equal samples
first.derivative First derivative
flat.pattern.filter Flat pattern filter
flat.pattern.filter.percentage Flat pattern filter by percentage
flat.pattern.filter.threshold Flat pattern filter by threshold
fold.change Fold change analysis

-- G --

get.all.intensities Get all intensities.
get.data Get data
get.data.as.df Get data as data frame
get.data.value Get data value
get.data.values Get data values
get.intensity Get intensity
get.metadata Get metadata
get.metadata.value Get metadata value
get.metadata.var Get metadata variable
get.overall.freq.list Get overall frequencies list
get.peak.values Get peak values
get.sample.names Get sample names
get.type Get type of data
get.value.label Get value label
get.x.label Get x-axis label
get.x.values.as.num Get x-axis values as numbers
get.x.values.as.text Get x-axis values as text

-- H --

heatmap.correlations Correlations heatmap
hierarchical.clustering Perform hierarchical clustering analysis

-- I --

impute.nas.knn Impute missing values with KNN
impute.nas.linapprox Impute missing values with linear approximation
impute.nas.mean Impute missing values with mean
impute.nas.median Impute missing values with median
impute.nas.value Impute missing values with value replacement
is.spectra Check type of data

-- K --

kmeans.clustering Perform k-means clustering analysis
kmeans.plot Plot kmeans clusters
kmeans.result.df Show cluster's members

-- M --

merge.datasets Merge two datasets
metadata.as.variables Metadata as variables
missingvalues.imputation Missing values imputation
msc.correction Multiplicative scatter correction
multiClassSummary Multi Class Summary
multifactor.aov.all.vars Multifactor ANOVA
multifactor.aov.onevar One Variable Multifactor ANOVA

-- N --

normalize Normalize data
num.samples Get number of samples
num.x.values Get number of x values

-- O --

offset.correction Offset correction

-- P --

pca.analysis.dataset PCA analysis (classical)
pca.biplot PCA biplot
pca.biplot3D 3D PCA biplot (interactive)
pca.importance PCA importance
pca.kmeans.plot2D 2D PCA k-means plot
pca.kmeans.plot3D 3D PCA k-means plot (interactive)
pca.pairs.kmeans.plot PCA k-means pairs plot
pca.pairs.plot PCA pairs plot
pca.plot.3d 3D pca plot
pca.robust PCA analysis (robust)
pca.scoresplot2D 2D PCA scores plot
pca.scoresplot3D 3D PCA scores plot
pca.scoresplot3D.rgl 3D PCA scores plot (interactive)
pca.screeplot PCA scree plot
peaks.per.sample Peaks per sample
peaks.per.samples Peaks per samples
plot.spectra Plot spectra
plot.spectra.simple Plot spectra (simple)
predict.samples Predict samples

-- R --

read.csvs.folder Read CSVs from folder
read.data.csv Read CSV data
read.dataset.csv Read dataset from CSV
read.metadata Read metadata
read.multiple.csvs Read multiple CSVs
recursive.feature.elimination Perform recursive feature elimination
remove.peaks.interval Remove interval of peaks
remove.peaks.interval.sample.list Remove interval of peaks (sample list)
replace.data.value Replace data value
replace.metadata.value Replace metadata's value

-- S --

savitzky.golay Savitzky-golay transformation
set.metadata Set new metadata
set.sample.names Set samples names
set.value.label Set value label
set.x.label Set x-label
set.x.values Set new x-values
shift.correction Shift correction
smoothing.interpolation Smoothing interpolation
smoothing.spcbin.hyperspec Wavelength binning
smoothing.spcloess.hyperspec Loess smoothing
sum.dataset Dataset summary
summary.var.importance Summary of variables importance

-- T --

train.and.predict Train and predict
train.classifier Train classifier
train.models.performance Train models
tTests.dataset t-Tests on dataset
tTests.pvalue t-Tests on matrix

-- U --

univariate.analysis Univariate Analysis

-- V --

values.per.peak Values per peak
var.importance Variables importance
variables.as.metadata Variables as metadata

-- X --

x.values.to.indexes Get x-values indexes
xvalue.interval.to.indexes Get indexes of an interval of x-values