A B C D F G H I K M N O P R S T U V X
aov.all.vars | Analysis of variance |
aov.one.var | Analysis of variance of one variable |
apply.filter.function | Apply filter function |
background.correction | Background correction |
baseline.correction | Baseline correction |
boxplot.variables | Boxplot of variables |
calculate.ellipses | Calculate ellipses |
calculate.shifts | Calculate shifts |
check.dataset | Check dataset |
clustering | Perform cluster analysis |
convert.to.factor | Convert metadata to factor |
correlations.dataset | Dataset correlations |
count.missing.values | Count missing values |
count.missing.values.per.sample | Count missing values per sample |
count.missing.values.per.variable | Count missing values per variable |
create.dataset | Create dataset |
data.correction | Data correction |
dataset.from.peaks | Dataset from peaks |
dendrogram.plot | Plot dendrogram |
dendrogram.plot.col | Plot dendrogram |
feature.selection | Perform feature selection |
filter.feature.selection | Perform selection by filter |
find.equal.samples | Find equal samples |
first.derivative | First derivative |
flat.pattern.filter | Flat pattern filter |
flat.pattern.filter.percentage | Flat pattern filter by percentage |
flat.pattern.filter.threshold | Flat pattern filter by threshold |
fold.change | Fold change analysis |
get.all.intensities | Get all intensities. |
get.data | Get data |
get.data.as.df | Get data as data frame |
get.data.value | Get data value |
get.data.values | Get data values |
get.intensity | Get intensity |
get.metadata | Get metadata |
get.metadata.value | Get metadata value |
get.metadata.var | Get metadata variable |
get.overall.freq.list | Get overall frequencies list |
get.peak.values | Get peak values |
get.sample.names | Get sample names |
get.type | Get type of data |
get.value.label | Get value label |
get.x.label | Get x-axis label |
get.x.values.as.num | Get x-axis values as numbers |
get.x.values.as.text | Get x-axis values as text |
heatmap.correlations | Correlations heatmap |
hierarchical.clustering | Perform hierarchical clustering analysis |
impute.nas.knn | Impute missing values with KNN |
impute.nas.linapprox | Impute missing values with linear approximation |
impute.nas.mean | Impute missing values with mean |
impute.nas.median | Impute missing values with median |
impute.nas.value | Impute missing values with value replacement |
is.spectra | Check type of data |
kmeans.clustering | Perform k-means clustering analysis |
kmeans.plot | Plot kmeans clusters |
kmeans.result.df | Show cluster's members |
merge.datasets | Merge two datasets |
metadata.as.variables | Metadata as variables |
missingvalues.imputation | Missing values imputation |
msc.correction | Multiplicative scatter correction |
multiClassSummary | Multi Class Summary |
multifactor.aov.all.vars | Multifactor ANOVA |
multifactor.aov.onevar | One Variable Multifactor ANOVA |
normalize | Normalize data |
num.samples | Get number of samples |
num.x.values | Get number of x values |
offset.correction | Offset correction |
pca.analysis.dataset | PCA analysis (classical) |
pca.biplot | PCA biplot |
pca.biplot3D | 3D PCA biplot (interactive) |
pca.importance | PCA importance |
pca.kmeans.plot2D | 2D PCA k-means plot |
pca.kmeans.plot3D | 3D PCA k-means plot (interactive) |
pca.pairs.kmeans.plot | PCA k-means pairs plot |
pca.pairs.plot | PCA pairs plot |
pca.plot.3d | 3D pca plot |
pca.robust | PCA analysis (robust) |
pca.scoresplot2D | 2D PCA scores plot |
pca.scoresplot3D | 3D PCA scores plot |
pca.scoresplot3D.rgl | 3D PCA scores plot (interactive) |
pca.screeplot | PCA scree plot |
peaks.per.sample | Peaks per sample |
peaks.per.samples | Peaks per samples |
plot.spectra | Plot spectra |
plot.spectra.simple | Plot spectra (simple) |
predict.samples | Predict samples |
read.csvs.folder | Read CSVs from folder |
read.data.csv | Read CSV data |
read.dataset.csv | Read dataset from CSV |
read.metadata | Read metadata |
read.multiple.csvs | Read multiple CSVs |
recursive.feature.elimination | Perform recursive feature elimination |
remove.peaks.interval | Remove interval of peaks |
remove.peaks.interval.sample.list | Remove interval of peaks (sample list) |
replace.data.value | Replace data value |
replace.metadata.value | Replace metadata's value |
savitzky.golay | Savitzky-golay transformation |
set.metadata | Set new metadata |
set.sample.names | Set samples names |
set.value.label | Set value label |
set.x.label | Set x-label |
set.x.values | Set new x-values |
shift.correction | Shift correction |
smoothing.interpolation | Smoothing interpolation |
smoothing.spcbin.hyperspec | Wavelength binning |
smoothing.spcloess.hyperspec | Loess smoothing |
sum.dataset | Dataset summary |
summary.var.importance | Summary of variables importance |
train.and.predict | Train and predict |
train.classifier | Train classifier |
train.models.performance | Train models |
tTests.dataset | t-Tests on dataset |
tTests.pvalue | t-Tests on matrix |
univariate.analysis | Univariate Analysis |
values.per.peak | Values per peak |
var.importance | Variables importance |
variables.as.metadata | Variables as metadata |
x.values.to.indexes | Get x-values indexes |
xvalue.interval.to.indexes | Get indexes of an interval of x-values |